
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY

OBJECT-ORIENTED PROGRAMMING
COMP2311

Instructor :Murad Njoum
Office : Masri322

Chapter 10 Thinking in Objects
and Strings -Revision

1

Constructing Strings
String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a shorthand
initializer for creating a string:

String message = "Welcome to Java";

2

Trace Code
String s = "Java";

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is
now unreferenced

 s

3

Strings Are Immutable
A String object is immutable; its contents cannot be changed.
Does the following code change the contents of the string?

String s = "Java";
s = "HTML";

s = "HTML";

3

Interned Strings
Since strings are immutable and are frequently used, to improve efficiency
and save memory, the JVM uses a unique instance for string literals with
the same character sequence. Such an instance is called interned. For
example, the following statements:

Examples
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));
System.out.println("s1 == s3 is " + (s1 == s3));

: String
Interned string object for
"Welcome to Java"

: String
A string object for
"Welcome to Java"

s1

s2

s3

4

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String
Interned string object for
"Welcome to Java"

s1

display
s1 == s2 is false
s1 == s3 is true

A new object is created if you use the new operator.
If you use the string initializer, no new object is
created if the interned object is already created.

5

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String
Interned string object for
"Welcome to Java"

: String
A string object for
"Welcome to Java"

s1

s2

6

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String
Interned string object for
"Welcome to Java"

: String
A string object for
"Welcome to Java"

s1

s2

s3

7

Replacing and Splitting Strings

 java.lang.String

+replace(oldChar: char,
newChar: char): String

+replaceFirst(oldString: String,
newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):
String[]

Returns a new string that replaces all matching character in this
string with the new character.

Returns a new string that replaces the first matching substring in
this string with the new substring.

Returns a new string that replace all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the
delimiter.

8

Examples

"Welcome".replace('e', 'A') returns a new string, WAlcomA.
"Welcome".replaceFirst("e", "AB") returns a new string,
WABlcome.
"Welcome".replaceAll("e", "AB") returns a new string,
WABlcomAB.
"Welcome".replace("el", "AB") returns a new string,
WABcome.
"Welcomel".replaceAll("el", "AB") returns a new string,
WABcomAB.

9

10

String[] tokens = "Java#HTML###Perl#hello#######".split("#", 0);
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i] + " ");

System.out.print("hi");

Java HTML Perl hello hi

Matching, Replacing and Splitting by Patterns

The following statement splits the string into an array of strings
delimited by some punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)
System.out.println(tokens[i]);

11

Convert Character and Numbers to Strings

The String class provides several static valueOf methods for converting a
character, an array of characters, and numeric values to strings. These
methods have the same name valueOf with different argument types
char, char[], double, long, int, and float. For example, to convert a
double value to a string, use
String.valueOf(5.44). The return value is string consists of characters ‘5’,

‘.’, ‘4’, and ‘4’.
String.valueOf(tokens[0]).

12

StringBuilder and StringBuffer

àThe StringBuilder/StringBuffer class is an alternative to
the String class.
àIn general, a StringBuilder/StringBuffer can be used wherever a string is
used.
àStringBuilder/StringBuffer is more flexible than String.
à You can add, insert, or append new contents into a string buffer,
whereas the value of a String object is fixed once the string is created.

13

StringBuilder Constructors

java.lang.StringBuilder

+StringBuilder()
+StringBuilder(capacity: int)
+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.
Constructs a string builder with the specified capacity.
Constructs a string builder with the specified string.

14

Modifying Strings in the Builder
 java.lang.StringBuilder

+append(data: char[]): StringBuilder
+append(data: char[], offset: int, len: int):

StringBuilder
+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder
+delete(startIndex: int, endIndex: int):

StringBuilder
+deleteCharAt(index: int): StringBuilder
+insert(index: int, data: char[], offset: int,

len: int): StringBuilder
+insert(offset: int, data: char[]):

StringBuilder
+insert(offset: int, b: aPrimitiveType):

StringBuilder
+insert(offset: int, s: String): StringBuilder
+replace(startIndex: int, endIndex: int, s:

String): StringBuilder
+reverse(): StringBuilder
+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.
Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this

builder.
Appends a string to this string builder.
Deletes characters from startIndex to endIndex.

Deletes a character at the specified index.
Inserts a subarray of the data in the array to the builder

at the specified index.
Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex
to endIndex with the specified string.

Reverses the characters in the builder.
Sets a new character at the specified index in this

builder.

15

Examples

stringBuilder.append("Java");
stringBuilder.insert(11, "HTML and ");
stringBuilder.delete(8, 21) changes the builder to Welcome Java.
stringBuilder.deleteCharAt(8)
stringBuilder.reverse() changes the builder to avaJ ot emocleW.
stringBuilder.replace(11, 15, "HTML")

changes the builder to Welcome to HTML.
stringBuilder.setCharAt(0, 'w') sets the builder to welcome to Java.

16

StringBuilder stringBuilder = new StringBuilder("Welcome Java");
Welcome JavaJava
Welcome JavHTML and aJava
Welcome Java
Welcome ava
ava emocleW
ava emocleWHTML

The toString, capacity, length, setLength, and charAt Methods

 java.lang.StringBuilder

+toString(): String
+capacity(): int
+charAt(index: int): char
+length(): int
+setLength(newLength: int): void
+substring(startIndex: int): String
+substring(startIndex: int, endIndex: int):

String
+trimToSize(): void

Returns a string object from the string builder.
Returns the capacity of this string builder.
Returns the character at the specified index.
Returns the number of characters in this builder.
Sets a new length in this builder.
Returns a substring starting at startIndex.
Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

17

Regular Expressions

A regular expression (abbreviated regex) is a string that describes a pattern for
matching a set of strings. Regular expression is a powerful tool for string
manipulations. You can use regular expressions for matching, replacing, and
splitting strings.

18

Matching Strings

"Java".matches("Java");
"Java".equals("Java");

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

19

Regular Expression Syntax

20

"Java".matches("J..a");

"Java".matches("J(av|ba)a");

Thinking in Objects

You see the advantages of object-oriented programming from the
preceding chapter. This chapter will demonstrate how to solve
problems using the object-oriented paradigm.

21

Class Abstraction and Encapsulation
Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides a
description of the class and let the user know how the class
can be used. The user of the class does not need to know
how the class is implemented. The detail of implementation
is encapsulated and hidden from the user.

Class Contract
(Signatures of

public methods and
public constants)

Class

Class implementation
is like a black box
hidden from the clients

Clients use the

class through the
contract of the class

22

Object-Oriented Thinking

Chapters 1-8 introduced fundamental programming techniques for
problem solving using loops, methods, and arrays. The studies of these
techniques lay a solid foundation for object-oriented programming.
Classes provide more flexibility and modularity for building reusable
software. This section improves the solution for a problem introduced in
Chapter 3 using the object-oriented approach. From the improvements,
you will gain the insight on the differences between the procedural
programming and object-oriented programming and see the benefits of
developing reusable code using objects and classes.

23

24

Relations :

25

Association
Whenever two classes are connected to each other, an association relationship link can be used.
(No ownership , no lifetime dependency)
You can use a simple name for the relationship close to the line. For example, in a game, a player will have a lot of save files.
If we consider Player and SaveFile as classes, then we can create an association link for them like below:

26

Aggregation
With aggregation, an object will always be referenced by other objects.
(One owner instance but no lifetime dependency)
This can be shown by an open diamond (a diamond without any fill color) in the UML.
Previously we described aggregation and composition using the Vehicle class example.
We will use the same example for the UML diagrams.

27

Composition
If an object only contains one other object such that their lives are bound together,
(One owner instance and lifetime child instance dependent on lifetime of owner
instance)
then we can show this relationship with the composition arrow in UML.

28

Generalization
Generalization is a synonym of inheritance in the world of OOP. When a class is inherited
from another class, then we can show this inheritance relationship with a simple arrow
from the child class to the parent class.

Car

Engine

Address

Student

Part of Has-a

class Car {
private final Engine engine;
Car(){

engine=new Engine();
}//final initialized once

}

class Engine {
private String type;
}

class Student {
private Address address;
Student(Address addr){

address=addr;
}

}
class Address {
String city;
String state;
Address(String city, String state){

this.city=city; this.state=state;
}

}

…
Car car=new Car();
…
• Create instance:
(engine automatically created once), student has passed parameters from other methods
• Delete instance: delete car instance ,automatically engine instance deleted and

can’t passed to other car instance, but inf class student deleted then address can
be passed to other students

aggregationcomposition

…
Student student=new Student();
…

29

Overloading Constructors

• If you create a class from which you instantiate objects, Java
automatically provides a constructor
• But, if you create your own constructor, the automatically created

constructor no longer exists
• As with other methods, you can overload constructors
• Overloading constructors provides a way to create objects with or without

initial arguments, as needed

30

Aggregation Between Same Class
Aggregation may exist between objects of the same class.
For example, a person may have a supervisor.

Person
Supervisor

1

1

public class Person {
// The type for the data is the class itself
private Person supervisor;
...

}

31

Aggregation Between Same Class
What happens if a person has several supervisors?

Person
Supervisor

1

m

 public class Person {
 ...
 private Person[] supervisors;
}

32

Wrapper Classes
qBoolean

qCharacter

qShort

qByte

33

q Integer
q Long

q Float

q Double

NOTE:

(1) The wrapper classes do not have no-arg constructors.

(2) The instances of all wrapper classes are immutable, i.e., their internal
values cannot be changed once the objects are created.

33

The Integer and Double Classes

34

java.lang.Integer

-value: int

+MAX_VALUE: int

+MIN_VALUE: int

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Integer): int

+toString(): String

+valueOf(s: String): Integer

+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int

+parseInt(s: String, radix: int): int

java.lang.Double
-value: double

+MAX_VALUE: double

+MIN_VALUE: double

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

34

The Integer Class and the Double Class

qConstructors

qClass Constants MAX_VALUE, MIN_VALUE

qConversion Methods

35 35

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a primitive data type value
or from a string representing the numeric value. The constructors for
Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

36 36

Numeric Wrapper Class Constants
vEach numerical wrapper class has the constants MAX_VALUE and

MIN_VALUE.

v MAX_VALUE represents the maximum value of the corresponding primitive
data type. For Byte, Short, Integer, and Long,

vMIN_VALUE represents the minimum byte, short, int, and long values.

v For Float and Double, MIN_VALUE represents the minimum positive float
and double values.

v The following statements display the maximum integer (2,147,483,647), the
minimum positive float (1.4E-45),

and the maximum double floating-point number
(1.79769313486231570e+308d).

37 37

Conversion Methods

Each numeric wrapper class implements the abstract
methods doubleValue, floatValue, intValue, longValue,
and shortValue, which are defined in the Number class.
These methods “convert” objects into primitive type
values.

38 38

The Static valueOf Methods
The numeric wrapper classes have a useful class
method, valueOf(String s). This method creates a new
object initialized to the value represented by the
specified string. For example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

39 39

The Methods for Parsing Strings into Numbers

You have used the parseInt method in the Integer class to
parse a numeric string into an int value

and the parseDouble method in the Double class to parse
a numeric string into a double value.

Each numeric wrapper class has two overloaded parsing
methods to parse a numeric string into an appropriate
numeric value.

40 40

Automatic Conversion Between Primitive
Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

41

Integer[] intArray = {new Integer(2),
 new Integer(4), new Integer(3)};

(a)

Equivalent

(b)

Integer[] intArray = {2, 4, 3};

New JDK 1.5 boxing

Integer[] intArray = {1, 2, 3};
System.out.println(intArray[0] + intArray[1] + intArray[2]);

Unboxing

41

Vis versa is also true.

BigInteger and BigDecimal

If you need to compute with very large integers or high precision
floating-point values, you can use the BigInteger and BigDecimal
classes in the java.math package.
Both are immutable. Both extend the Number class and implement
the Comparable interface.

42 42

BigInteger and BigDecimal
BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.println(c);

43

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

RunLargeFactorial

43

44

package test;

import java.util.Scanner;
import java.math.*;

public class LargeFactorial {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int n = input.nextInt();
System.out.println(n + "! is \n" + factorial(n));

input.close();
}

public static BigInteger factorial(long n) {
BigInteger result = BigInteger.ONE; // Assign 1 to

result
for (int i = 1; i <= n; i++) // Multiply each i
result = result.multiply(BigInteger.valueOf(i));

return result;
}

}

